import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import keras from data_load import data_format # 加载数据集 X_train, X_test, Y_train, Y_test = data_format('data/archive/PowerQualityDistributionDataset1.csv') # 设置随机种子以确保重现性 np.random.seed(7) np.random.shuffle(X_test) np.random.seed(7) np.random.shuffle(Y_test) tf.random.set_seed(7) # 加载训练好的模型 model = keras.models.load_model('model_nomal') # 使用测试集评估模型的初始准确率 loss, accuracy = model.evaluate(X_test, Y_test) print("Test original accuracy:", accuracy) # 定义损失函数 loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # 将测试数据转换为TensorFlow张量 X_test_tensor = tf.convert_to_tensor(X_test, dtype=tf.float64) Y_test_tensor = tf.convert_to_tensor(Y_test, dtype=tf.int32) # 用于存储不同gamma值下的准确率 accuracy_per_gamma = {} # 遍历不同的gamma值 for gamma in [0.05, 0.1, 0.2, 0.4]: # 使用GradientTape计算梯度 with tf.GradientTape() as tape: tape.watch(X_test_tensor) predictions = model(X_test_tensor) loss = loss_fn(Y_test_tensor, predictions) # 计算关于输入的梯度 gradients = tape.gradient(loss, X_test_tensor) # 平坦化梯度以便进行处理 flattened_gradients = tf.reshape(gradients, [-1]) # 选择最大的γ * |X|个梯度 num_gradients_to_select = int(gamma * tf.size(flattened_gradients, out_type=tf.dtypes.float32)) top_gradients_indices = tf.argsort(flattened_gradients, direction='DESCENDING')[:num_gradients_to_select] # 创建新的梯度张量,初始值为原始梯度 updated_gradients = tf.identity(flattened_gradients) # 创建布尔掩码,用于选择特定梯度 mask = tf.ones_like(updated_gradients, dtype=bool) mask = tf.tensor_scatter_nd_update(mask, tf.expand_dims(top_gradients_indices, 1), tf.zeros_like(top_gradients_indices, dtype=bool)) # 应用掩码更新梯度 updated_gradients = tf.where(mask, tf.zeros_like(updated_gradients), updated_gradients) # 将梯度恢复到原始形状 updated_gradients = tf.reshape(updated_gradients, tf.shape(gradients)) # 用于存储不同学习率下的准确率 accuracy_list = [] # 遍历不同的学习率 for learning_rate in [0.1, 0.2, 0.3, 0.4, 0.5]: # 应用学习率到梯度 scaled_gradients = (learning_rate * 700) * updated_gradients # 更新X_test_tensor X_train_updated = tf.add(X_test_tensor, scaled_gradients) X_train_updated = X_train_updated.numpy() # 评估更新后的模型 loss, accuracy = model.evaluate(X_train_updated, Y_test) print(f"Accuracy gamma: {gamma},learning:{learning_rate}", accuracy) # 记录准确率 accuracy_list.append(accuracy) # 存储每个gamma值下的准确率 accuracy_per_gamma[gamma] = accuracy_list # 定义学习率和gamma值 learning_rates = [0.1, 0.2, 0.3, 0.4, 0.5] gammas = [0.05, 0.1, 0.2, 0.4] # 创建并绘制结果图 plt.figure(figsize=(10, 6)) for gamma in gammas: plt.plot(learning_rates, accuracy_per_gamma[gamma], marker='o', label=f'Gamma={gamma}') plt.title('Accuracy vs Learning Rate for Different Gammas') plt.xlabel('Learning Rate') plt.ylabel('Accuracy') plt.legend() plt.show()